Program Listing for File rotation_parameterization.h
↰ Return to documentation for file (cartographer/mapping/internal/3d/rotation_parameterization.h)
/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_MAPPING_INTERNAL_3D_ROTATION_PARAMETERIZATION_H_
#define CARTOGRAPHER_MAPPING_INTERNAL_3D_ROTATION_PARAMETERIZATION_H_
#include "cartographer/common/math.h"
#include "ceres/jet.h"
#include "ceres/rotation.h"
namespace cartographer {
namespace mapping {
#if CERES_VERSION_MAJOR > 2 || CERES_VERSION_MAJOR == 2 && CERES_VERSION_MINOR >= 1
// Provides operations used to create a Ceres Manifold with a 4-D ambient
// space and a 1-D tangent space that represents a yaw rotation only.
struct YawOnlyQuaternionOperations {
template <typename T>
bool Plus(const T* x, const T* delta, T* x_plus_delta) const {
const T clamped_delta = common::Clamp(delta[0], T(-0.5), T(0.5));
T q_delta[4];
q_delta[0] = ceres::sqrt(1. - clamped_delta * clamped_delta);
q_delta[1] = T(0.);
q_delta[2] = T(0.);
q_delta[3] = clamped_delta;
ceres::QuaternionProduct(q_delta, x, x_plus_delta);
return true;
}
template <typename T>
bool Minus(const T* y, const T* x, T* y_minus_x) const {
T minus_x[4] = {x[0], -x[1], -x[2], -x[3]};
T q_delta[4];
ceres::QuaternionProduct(y, minus_x, q_delta);
y_minus_x[0] = q_delta[3];
return true;
}
};
// Provides operations used to create a Ceres Manifold with a 4-D ambient
// space and a 2-D tangent space that represents a rotation only in pitch and
// roll, but no yaw.
struct ConstantYawQuaternionOperations {
template <typename T>
bool Plus(const T* x, const T* delta, T* x_plus_delta) const {
const T delta_norm =
ceres::sqrt(common::Pow2(delta[0]) + common::Pow2(delta[1]));
const T sin_delta_over_delta =
delta_norm < 1e-6 ? T(1.) : ceres::sin(delta_norm) / delta_norm;
T q_delta[4];
q_delta[0] = delta_norm < 1e-6 ? T(1.) : ceres::cos(delta_norm);
q_delta[1] = sin_delta_over_delta * delta[0];
q_delta[2] = sin_delta_over_delta * delta[1];
q_delta[3] = T(0.);
// We apply the 'delta' which is interpreted as an angle-axis rotation
// vector in the xy-plane of the submap frame. This way we can align to
// gravity because rotations around the z-axis in the submap frame do not
// change gravity alignment, while disallowing random rotations of the map
// that have nothing to do with gravity alignment (i.e. we disallow steps
// just changing "yaw" of the complete map).
ceres::QuaternionProduct(x, q_delta, x_plus_delta);
return true;
}
template <typename T>
bool Minus(const T* y, const T* x, T* y_minus_x) const {
T minus_x[4] = {x[0], -x[1], -x[2], -x[3]};
T q_delta[4];
ceres::QuaternionProduct(minus_x, y, q_delta);
const T& cos_delta_norm = q_delta[0];
const T sin_delta_norm =
ceres::sqrt(common::Pow2(q_delta[1]) + common::Pow2(q_delta[2]));
const T delta_norm = atan2(sin_delta_norm, cos_delta_norm);
const T delta_over_sin_delta =
delta_norm < 1e-6 ? T(1.) : delta_norm / sin_delta_norm;
y_minus_x[0] = q_delta[1] * delta_over_sin_delta;
y_minus_x[1] = q_delta[2] * delta_over_sin_delta;
return true;
}
};
#else
struct YawOnlyQuaternionPlus {
template <typename T>
bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
const T clamped_delta = common::Clamp(delta[0], T(-0.5), T(0.5));
T q_delta[4];
q_delta[0] = ceres::sqrt(1. - clamped_delta * clamped_delta);
q_delta[1] = T(0.);
q_delta[2] = T(0.);
q_delta[3] = clamped_delta;
ceres::QuaternionProduct(q_delta, x, x_plus_delta);
return true;
}
};
struct ConstantYawQuaternionPlus {
template <typename T>
bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
const T delta_norm =
ceres::sqrt(common::Pow2(delta[0]) + common::Pow2(delta[1]));
const T sin_delta_over_delta =
delta_norm < 1e-6 ? T(1.) : ceres::sin(delta_norm) / delta_norm;
T q_delta[4];
q_delta[0] = delta_norm < 1e-6 ? T(1.) : ceres::cos(delta_norm);
q_delta[1] = sin_delta_over_delta * delta[0];
q_delta[2] = sin_delta_over_delta * delta[1];
q_delta[3] = T(0.);
// We apply the 'delta' which is interpreted as an angle-axis rotation
// vector in the xy-plane of the submap frame. This way we can align to
// gravity because rotations around the z-axis in the submap frame do not
// change gravity alignment, while disallowing random rotations of the map
// that have nothing to do with gravity alignment (i.e. we disallow steps
// just changing "yaw" of the complete map).
ceres::QuaternionProduct(x, q_delta, x_plus_delta);
return true;
}
};
#endif
} // namespace mapping
} // namespace cartographer
#endif // CARTOGRAPHER_MAPPING_INTERNAL_3D_ROTATION_PARAMETERIZATION_H_