Program Listing for File convex.hxx
↰ Return to documentation for file (include/coal/shape/convex.hxx)
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2019, CNRS - LAAS
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef COAL_SHAPE_CONVEX_HXX
#define COAL_SHAPE_CONVEX_HXX
#include <set>
#include <vector>
#include <iostream>
#include "coal/shape/convex.h"
namespace coal {
template <typename PolygonT>
ConvexTpl<PolygonT>::ConvexTpl(std::shared_ptr<std::vector<Vec3s>> points_,
unsigned int num_points_,
std::shared_ptr<std::vector<PolygonT>> polygons_,
unsigned int num_polygons_)
: Base(), polygons(polygons_), num_polygons(num_polygons_) {
this->initialize(points_, num_points_);
this->fillNeighbors();
this->buildSupportWarmStart();
}
template <typename PolygonT>
ConvexTpl<PolygonT>& ConvexTpl<PolygonT>::operator=(const ConvexTpl& other) {
if (this != &other) {
// Copy the base
this->base() = other.base();
// Shallow copy the polygons
this->num_polygons = other.num_polygons;
this->polygons = other.polygons;
}
return *this;
}
template <typename PolygonT>
template <typename OtherPolygonT>
void ConvexTpl<PolygonT>::deepcopy(const ConvexTpl<PolygonT>* source,
ConvexTpl<OtherPolygonT>* copy) {
if (source == nullptr || copy == nullptr) {
return;
}
// Deep copy the base
Base::deepcopy(source, copy);
// Deep copy the polygons
typedef typename OtherPolygonT::IndexType OtherIndexType;
copy->num_polygons = source->num_polygons;
if (source->polygons != nullptr) {
const std::vector<PolygonT>& source_polygons = *(source->polygons);
copy->polygons.reset(
new std::vector<OtherPolygonT>(source_polygons.size()));
std::vector<OtherPolygonT>& copy_polygons = *(copy->polygons);
for (std::size_t i = 0; i < source_polygons.size(); ++i) {
copy_polygons[i] = source_polygons[i].template cast<OtherIndexType>();
}
} else {
copy->polygons.reset();
}
}
template <typename PolygonT>
void ConvexTpl<PolygonT>::set(std::shared_ptr<std::vector<Vec3s>> points_,
unsigned int num_points_,
std::shared_ptr<std::vector<PolygonT>> polygons_,
unsigned int num_polygons_) {
Base::set(points_, num_points_);
this->num_polygons = num_polygons_;
this->polygons = polygons_;
this->fillNeighbors();
this->buildSupportWarmStart();
}
template <typename PolygonT>
Matrix3s ConvexTpl<PolygonT>::computeMomentofInertia() const {
typedef typename PolygonT::size_type size_type;
typedef typename PolygonT::IndexType IndexType;
Matrix3s C = Matrix3s::Zero();
Matrix3s C_canonical;
C_canonical << Scalar(1 / 60.0), //
Scalar(1 / 120.0), //
Scalar(1 / 120.0), //
Scalar(1 / 120.0), //
Scalar(1 / 60.0), //
Scalar(1 / 120.0), //
Scalar(1 / 120.0), //
Scalar(1 / 120.0), //
Scalar(1 / 60.0);
if (!(points.get())) {
std::cerr << "Error in `ConvexTpl::computeMomentofInertia`! ConvexTpl has "
"no vertices."
<< std::endl;
return C;
}
const std::vector<Vec3s>& points_ = *points;
if (!(polygons.get())) {
std::cerr << "Error in `ConvexTpl::computeMomentofInertia`! ConvexTpl has "
"no polygons."
<< std::endl;
return C;
}
const std::vector<PolygonT>& polygons_ = *polygons;
for (unsigned int i = 0; i < num_polygons; ++i) {
const PolygonT& polygon = polygons_[i];
// compute the center of the polygon
Vec3s plane_center(0, 0, 0);
for (size_type j = 0; j < polygon.size(); ++j)
plane_center += points_[polygon[(IndexType)j]];
plane_center /= Scalar(polygon.size());
// compute the volume of tetrahedron making by neighboring two points, the
// plane center and the reference point (zero) of the convex shape
const Vec3s& v3 = plane_center;
for (size_type j = 0; j < polygon.size(); ++j) {
IndexType e_first = polygon[static_cast<IndexType>(j)];
IndexType e_second =
polygon[static_cast<IndexType>((j + 1) % polygon.size())];
const Vec3s& v1 = points_[e_first];
const Vec3s& v2 = points_[e_second];
Matrix3s A;
A << v1.transpose(), v2.transpose(),
v3.transpose(); // this is A' in the original document
C += A.transpose() * C_canonical * A * (v1.cross(v2)).dot(v3);
}
}
return C.trace() * Matrix3s::Identity() - C;
}
template <typename PolygonT>
Vec3s ConvexTpl<PolygonT>::computeCOM() const {
typedef typename PolygonT::size_type size_type;
typedef typename PolygonT::IndexType IndexType;
Vec3s com(0, 0, 0);
Scalar vol = 0;
if (!(points.get())) {
std::cerr << "Error in `ConvexTpl::computeCOM`! ConvexTpl has no vertices."
<< std::endl;
return com;
}
const std::vector<Vec3s>& points_ = *points;
if (!(polygons.get())) {
std::cerr << "Error in `ConvexTpl::computeCOM`! ConvexTpl has no polygons."
<< std::endl;
return com;
}
const std::vector<PolygonT>& polygons_ = *polygons;
for (unsigned int i = 0; i < num_polygons; ++i) {
const PolygonT& polygon = polygons_[i];
// compute the center of the polygon
Vec3s plane_center(0, 0, 0);
for (size_type j = 0; j < polygon.size(); ++j)
plane_center += points_[polygon[(IndexType)j]];
plane_center /= Scalar(polygon.size());
// compute the volume of tetrahedron making by neighboring two points, the
// plane center and the reference point (zero) of the convex shape
const Vec3s& v3 = plane_center;
for (size_type j = 0; j < polygon.size(); ++j) {
IndexType e_first = polygon[static_cast<IndexType>(j)];
IndexType e_second =
polygon[static_cast<IndexType>((j + 1) % polygon.size())];
const Vec3s& v1 = points_[e_first];
const Vec3s& v2 = points_[e_second];
Scalar d_six_vol = (v1.cross(v2)).dot(v3);
vol += d_six_vol;
com += (points_[e_first] + points_[e_second] + plane_center) * d_six_vol;
}
}
return com / (vol * 4); // here we choose zero as the reference
}
template <typename PolygonT>
Scalar ConvexTpl<PolygonT>::computeVolume() const {
typedef typename PolygonT::size_type size_type;
typedef typename PolygonT::IndexType IndexType;
Scalar vol = 0;
if (!(points.get())) {
std::cerr
<< "Error in `ConvexTpl::computeVolume`! ConvexTpl has no vertices."
<< std::endl;
return vol;
}
const std::vector<Vec3s>& points_ = *points;
if (!(polygons.get())) {
std::cerr
<< "Error in `ConvexTpl::computeVolume`! ConvexTpl has no polygons."
<< std::endl;
return vol;
}
const std::vector<PolygonT>& polygons_ = *polygons;
for (unsigned int i = 0; i < num_polygons; ++i) {
const PolygonT& polygon = polygons_[i];
// compute the center of the polygon
Vec3s plane_center(0, 0, 0);
for (size_type j = 0; j < polygon.size(); ++j)
plane_center += points_[polygon[(IndexType)j]];
plane_center /= Scalar(polygon.size());
// compute the volume of tetrahedron making by neighboring two points, the
// plane center and the reference point (zero point) of the convex shape
const Vec3s& v3 = plane_center;
for (size_type j = 0; j < polygon.size(); ++j) {
IndexType e_first = polygon[static_cast<IndexType>(j)];
IndexType e_second =
polygon[static_cast<IndexType>((j + 1) % polygon.size())];
const Vec3s& v1 = points_[e_first];
const Vec3s& v2 = points_[e_second];
Scalar d_six_vol = (v1.cross(v2)).dot(v3);
vol += d_six_vol;
}
}
return vol / 6;
}
template <typename PolygonT>
void ConvexTpl<PolygonT>::fillNeighbors() {
neighbors.reset(new std::vector<Neighbors>(num_points));
typedef typename PolygonT::size_type size_type;
typedef typename PolygonT::IndexType IndexType;
std::vector<std::set<IndexType>> nneighbors(num_points);
unsigned int c_nneighbors = 0;
if (!(polygons.get())) {
std::cerr
<< "Error in `ConvexTpl::fillNeighbors`! ConvexTpl has no polygons."
<< std::endl;
}
const std::vector<PolygonT>& polygons_ = *polygons;
for (unsigned int l = 0; l < num_polygons; ++l) {
const PolygonT& polygon = polygons_[l];
const size_type n = polygon.size();
for (size_type j = 0; j < polygon.size(); ++j) {
size_type i = (j == 0) ? n - 1 : j - 1;
size_type k = (j == n - 1) ? 0 : j + 1;
IndexType pi = polygon[(IndexType)i], pj = polygon[(IndexType)j],
pk = polygon[(IndexType)k];
// Update neighbors of pj;
if (nneighbors[pj].count(pi) == 0) {
c_nneighbors++;
nneighbors[pj].insert(pi);
}
if (nneighbors[pj].count(pk) == 0) {
c_nneighbors++;
nneighbors[pj].insert(pk);
}
}
}
nneighbors_.reset(new std::vector<IndexType>(c_nneighbors));
std::vector<Neighbors>& neighbors_ = *neighbors;
std::vector<IndexType>& nneighbors__ = *(nneighbors_);
IndexType begin_id = 0;
for (unsigned int i = 0; i < num_points; ++i) {
Neighbors& n = neighbors_[i];
if (nneighbors[i].size() >= (std::numeric_limits<unsigned char>::max)())
COAL_THROW_PRETTY("Too many neighbors.", std::logic_error);
n.count = (unsigned char)nneighbors[i].size();
n.begin_id = begin_id;
IndexType j = 0;
for (IndexType idx : nneighbors[i]) {
nneighbors__[n.begin_id + j] = idx;
j++;
}
begin_id += n.count;
}
}
} // namespace coal
#endif