Program Listing for File ruiz.hpp
↰ Return to documentation for file (include/proxsuite/proxqp/dense/preconditioner/ruiz.hpp)
//
// Copyright (c) 2022 INRIA
//
#ifndef PROXSUITE_PROXQP_DENSE_PRECOND_RUIZ_HPP
#define PROXSUITE_PROXQP_DENSE_PRECOND_RUIZ_HPP
#include "proxsuite/proxqp/dense/views.hpp"
#include "proxsuite/proxqp/dense/fwd.hpp"
#include <proxsuite/linalg/dense/core.hpp>
#include <proxsuite/proxqp/settings.hpp>
#include <ostream>
#include <iostream>
#include <Eigen/Core>
namespace proxsuite {
namespace proxqp {
enum struct Symmetry
{
general,
lower,
upper,
};
namespace dense {
namespace detail {
template<typename T>
auto
ruiz_scale_qp_in_place( //
VectorViewMut<T> delta_,
std::ostream* logger_ptr,
QpViewBoxMut<T> qp,
T epsilon,
isize max_iter,
bool preconditioning_for_infeasible_problems,
Symmetry sym,
HessianType HessianType,
const bool box_constraints,
proxsuite::linalg::veg::dynstack::DynStackMut stack) -> T
{
T c(1);
auto S = delta_.to_eigen();
auto H = qp.H.to_eigen();
auto g = qp.g.to_eigen();
auto A = qp.A.to_eigen();
auto b = qp.b.to_eigen();
auto C = qp.C.to_eigen();
auto u = qp.u.to_eigen();
auto l = qp.l.to_eigen();
auto l_box = qp.l_box.to_eigen();
auto u_box = qp.u_box.to_eigen();
auto i_scaled = qp.I.to_eigen();
i_scaled.setOnes();
static constexpr T machine_eps = std::numeric_limits<T>::epsilon();
/*
* compute equilibration parameters and scale in place the qp following
* algorithm
*
* modified: removed g in gamma computation
*/
isize n = qp.H.rows;
isize n_eq = qp.A.rows;
isize n_in = qp.C.rows;
isize n_constraints(n_in);
if (box_constraints) {
n_constraints += n;
}
T gamma = T(1);
LDLT_TEMP_VEC(T, delta, n + n_eq + n_constraints, stack);
i64 iter = 1;
while (infty_norm((1 - delta.array()).matrix()) > epsilon) {
if (logger_ptr != nullptr) {
*logger_ptr //
<< "j : " //
<< iter //
<< " ; error : " //
<< infty_norm((1 - delta.array()).matrix()) //
<< "\n\n";
}
if (iter == max_iter) {
break;
} else {
++iter;
}
// normalization vector
{
switch (HessianType) {
case HessianType::Zero:
for (isize k = 0; k < n; ++k) {
T aux = sqrt(std::max({ n_eq > 0 ? infty_norm(A.col(k)) : T(0),
n_in > 0 ? infty_norm(C.col(k)) : T(0),
box_constraints ? i_scaled[k] : T(0) }));
if (aux == T(0)) {
delta(k) = T(1);
} else {
delta(k) = T(1) / (aux + machine_eps);
}
}
break;
case HessianType::Dense:
for (isize k = 0; k < n; ++k) {
switch (sym) {
case Symmetry::upper: { // upper triangular part
T aux =
sqrt(std::max({ infty_norm(H.col(k).head(k)),
infty_norm(H.row(k).tail(n - k)),
n_eq > 0 ? infty_norm(A.col(k)) : T(0),
n_in > 0 ? infty_norm(C.col(k)) : T(0),
box_constraints ? i_scaled[k] : T(0) }));
if (aux == T(0)) {
delta(k) = T(1);
} else {
delta(k) = T(1) / (aux + machine_eps);
}
break;
}
case Symmetry::lower: { // lower triangular part
T aux =
sqrt(std::max({ infty_norm(H.col(k).head(k)),
infty_norm(H.col(k).tail(n - k)),
n_eq > 0 ? infty_norm(A.col(k)) : T(0),
n_in > 0 ? infty_norm(C.col(k)) : T(0),
box_constraints ? i_scaled[k] : T(0) }));
if (aux == T(0)) {
delta(k) = T(1);
} else {
delta(k) = T(1) / (aux + machine_eps);
}
break;
}
case Symmetry::general: {
T aux =
sqrt(std::max({ infty_norm(H.col(k)),
n_eq > 0 ? infty_norm(A.col(k)) : T(0),
n_in > 0 ? infty_norm(C.col(k)) : T(0),
box_constraints ? i_scaled[k] : T(0) }));
if (aux == T(0)) {
delta(k) = T(1);
} else {
delta(k) = T(1) / (aux + machine_eps);
}
break;
}
}
}
break;
case HessianType::Diagonal:
for (isize k = 0; k < n; ++k) {
T aux = sqrt(std::max({ std::abs(H(k, k)),
n_eq > 0 ? infty_norm(A.col(k)) : T(0),
n_in > 0 ? infty_norm(C.col(k)) : T(0),
box_constraints ? i_scaled[k] : T(0) }));
if (aux == T(0)) {
delta(k) = T(1);
} else {
delta(k) = T(1) / (aux + machine_eps);
}
}
break;
}
if (preconditioning_for_infeasible_problems) {
delta.tail(n_eq + n_constraints).setOnes();
} else {
for (isize k = 0; k < n_eq; ++k) {
T aux = sqrt(infty_norm(A.row(k)));
if (aux == T(0)) {
delta(n + k) = T(1);
} else {
delta(n + k) = T(1) / (aux + machine_eps);
}
}
for (isize k = 0; k < n_in; ++k) {
T aux = sqrt(infty_norm(C.row(k)));
if (aux == T(0)) {
delta(k + n + n_eq) = T(1);
} else {
delta(k + n + n_eq) = T(1) / (aux + machine_eps);
}
}
if (box_constraints) {
for (isize k = 0; k < n; ++k) {
delta(k + n + n_eq + n_in) = T(1) / sqrt(i_scaled[k] + machine_eps);
}
}
}
// removed as non deterministic when using avx
// https://gitlab.com/libeigen/eigen/-/issues/1728
// if (preconditioning_for_infeasible_problems) {
// T mean = delta.segment(n, n_eq_in).mean();
// delta.segment(n,n_eq_in).setConstant(mean);
// }
}
{
// normalize A and C
A = delta.segment(n, n_eq).asDiagonal() * A * delta.head(n).asDiagonal();
C = delta.segment(n + n_eq, n_in).asDiagonal() * C *
delta.head(n).asDiagonal();
if (box_constraints) {
i_scaled.array() *= delta.head(n).array();
i_scaled.array() *= delta.tail(n).array();
u_box.array() *= delta.tail(n).array();
l_box.array() *= delta.tail(n).array();
}
// normalize vectors
g.array() *= delta.head(n).array();
b.array() *= delta.segment(n, n_eq).array();
u.array() *= delta.segment(n + n_eq, n_in).array();
l.array() *= delta.segment(n + n_eq, n_in).array();
// normalize H
switch (HessianType) {
case HessianType::Zero:
break;
case HessianType::Dense:
switch (sym) {
case Symmetry::upper: {
// upper triangular part
for (isize j = 0; j < n; ++j) {
H.col(j).head(j + 1) *= delta(j);
}
// normalisation des lignes
for (isize i = 0; i < n; ++i) {
H.row(i).tail(n - i) *= delta(i);
}
break;
}
case Symmetry::lower: {
// lower triangular part
for (isize j = 0; j < n; ++j) {
H.col(j).tail(n - j) *= delta(j);
}
// normalisation des lignes
for (isize i = 0; i < n; ++i) {
H.row(i).head(i + 1) *= delta(i);
}
break;
}
case Symmetry::general: {
// all matrix
H = delta.head(n).asDiagonal() * H * delta.head(n).asDiagonal();
break;
}
default:
break;
}
// additional normalization for the cost function
switch (sym) {
case Symmetry::upper: {
// upper triangular part
T tmp = T(0);
for (isize j = 0; j < n; ++j) {
tmp += proxqp::dense::infty_norm(H.row(j).tail(n - j));
}
gamma = 1 / std::max(tmp / T(n), T(1));
break;
}
case Symmetry::lower: {
// lower triangular part
T tmp = T(0);
for (isize j = 0; j < n; ++j) {
tmp += proxqp::dense::infty_norm(H.col(j).tail(n - j));
}
gamma = 1 / std::max(tmp / T(n), T(1));
break;
}
case Symmetry::general: {
// all matrix
gamma =
1 / std::max(
T(1),
(H.colwise().template lpNorm<Eigen::Infinity>()).mean());
break;
}
default:
break;
}
break;
case HessianType::Diagonal:
// H = delta.head(n).asDiagonal() * H.asDiagonal() *
// delta.head(n).asDiagonal();
H.diagonal().array() *=
delta.head(n)
.array(); //* H.asDiagonal() * delta.head(n).asDiagonal();
H.diagonal().array() *=
delta.head(n)
.array(); //* H.asDiagonal() * delta.head(n).asDiagonal();
gamma =
1 /
std::max(T(1),
(H.diagonal().template lpNorm<Eigen::Infinity>()) / T(n));
H *= gamma;
break;
}
g *= gamma;
S.array() *= delta.array(); // coefficientwise product
c *= gamma;
}
}
return c;
}
} // namespace detail
namespace preconditioner {
template<typename T>
struct RuizEquilibration
{
Vec<T> delta;
T c;
isize dim;
isize n_eq;
isize n_in;
T epsilon;
i64 max_iter;
Symmetry sym;
std::ostream* logger_ptr = nullptr;
explicit RuizEquilibration(isize dim_,
isize n_eq_,
isize n_in_,
bool box_constraints,
T epsilon_ = T(1e-3),
i64 max_iter_ = 10,
Symmetry sym_ = Symmetry::general,
std::ostream* logger = nullptr)
: delta(Vec<T>::Ones(dim_ + n_eq_ + n_in_ + (box_constraints ? dim_ : 0)))
, c(1)
, dim(dim_)
, n_eq(n_eq_)
, n_in(n_in_)
, epsilon(epsilon_)
, max_iter(max_iter_)
, sym(sym_)
, logger_ptr(logger)
{
}
void print() const
{
// CHANGE: endl to newline
*logger_ptr << " delta : " << delta << "\n\n";
*logger_ptr << " c : " << c << "\n\n";
}
static auto scale_qp_in_place_req(proxsuite::linalg::veg::Tag<T> tag,
isize n,
isize n_eq,
isize n_in,
bool box_constraints)
-> proxsuite::linalg::veg::dynstack::StackReq
{
if (box_constraints) {
return proxsuite::linalg::dense::temp_vec_req(tag, 2 * n + n_eq + n_in);
} else {
return proxsuite::linalg::dense::temp_vec_req(tag, n + n_eq + n_in);
}
}
// H_new = c * head @ H @ head
// A_new = tail @ A @ head
// g_new = c * head @ g
// b_new = tail @ b
void scale_qp_in_place(QpViewBoxMut<T> qp,
bool execute_preconditioner,
bool preconditioning_for_infeasible_problems,
const isize max_iter,
const T epsilon,
const HessianType& HessianType,
const bool box_constraints,
proxsuite::linalg::veg::dynstack::DynStackMut stack)
{
if (execute_preconditioner) {
delta.setOnes();
c =
detail::ruiz_scale_qp_in_place({ proxqp::from_eigen, delta },
logger_ptr,
qp,
epsilon,
max_iter,
preconditioning_for_infeasible_problems,
sym,
HessianType,
box_constraints,
stack);
} else {
auto H = qp.H.to_eigen();
auto g = qp.g.to_eigen();
auto A = qp.A.to_eigen();
auto b = qp.b.to_eigen();
auto C = qp.C.to_eigen();
auto u = qp.u.to_eigen();
auto l = qp.l.to_eigen();
auto l_box = qp.l_box.to_eigen();
auto u_box = qp.u_box.to_eigen();
auto i_scaled = qp.I.to_eigen(); // it is a vector
isize n = qp.H.rows;
isize n_eq = qp.A.rows;
isize n_in = qp.C.rows;
// normalize A and C
A = delta.segment(n, n_eq).asDiagonal() * A * delta.head(n).asDiagonal();
C = delta.segment(n + n_eq, n_in).asDiagonal() * C *
delta.head(n).asDiagonal();
// normalize H
switch (HessianType) {
case HessianType::Dense:
switch (sym) {
case Symmetry::upper: {
// upper triangular part
for (isize j = 0; j < n; ++j) {
H.col(j).head(j + 1) *= delta(j);
}
// normalisation des lignes
for (isize i = 0; i < n; ++i) {
H.row(i).tail(n - i) *= delta(i);
}
break;
}
case Symmetry::lower: {
// lower triangular part
for (isize j = 0; j < n; ++j) {
H.col(j).tail(n - j) *= delta(j);
}
// normalisation des lignes
for (isize i = 0; i < n; ++i) {
H.row(i).head(i + 1) *= delta(i);
}
break;
}
case Symmetry::general: {
// all matrix
H = delta.head(n).asDiagonal() * H * delta.head(n).asDiagonal();
break;
}
default:
break;
}
break;
case HessianType::Zero:
break;
case HessianType::Diagonal:
// H = delta.head(n).asDiagonal() * H.asDiagonal() *
// delta.head(n).asDiagonal();
H.diagonal().array() *=
delta.head(n)
.array(); //* H.asDiagonal() * delta.head(n).asDiagonal();
H.diagonal().array() *=
delta.head(n)
.array(); //* H.asDiagonal() * delta.head(n).asDiagonal();
break;
}
// normalize vectors
g.array() *= delta.head(n).array();
b.array() *= delta.segment(n, n_eq).array();
l.array() *= delta.segment(n + n_eq, n_in).array();
u.array() *= delta.segment(n + n_eq, n_in).array();
if (box_constraints) {
u_box.array() *= delta.tail(n).array();
l_box.array() *= delta.tail(n).array();
i_scaled.array() *= delta.tail(n).array();
i_scaled.array() *= delta.head(n).array();
}
g *= c;
H *= c;
}
}
// modifies variables in place
void scale_primal_in_place(VectorViewMut<T> primal) const
{
primal.to_eigen().array() /= delta.array().head(dim);
}
void scale_dual_in_place(VectorViewMut<T> dual) const
{
dual.to_eigen().array() = dual.as_const().to_eigen().array() /
delta.tail(delta.size() - dim).array() * c;
}
void scale_dual_in_place_eq(VectorViewMut<T> dual) const
{
dual.to_eigen().array() = dual.as_const().to_eigen().array() /
delta.middleRows(dim, n_eq).array() * c;
}
void scale_dual_in_place_in(VectorViewMut<T> dual) const
{
dual.to_eigen().array() = dual.as_const().to_eigen().array() /
delta.segment(dim + n_eq, n_in).array() * c;
}
void unscale_primal_in_place(VectorViewMut<T> primal) const
{
primal.to_eigen().array() *= delta.array().head(dim);
}
void unscale_dual_in_place(VectorViewMut<T> dual) const
{
dual.to_eigen().array() = dual.as_const().to_eigen().array() *
delta.tail(delta.size() - dim).array() / c;
}
void unscale_box_dual_in_place_in(VectorViewMut<T> dual) const
{
dual.to_eigen().array() =
delta.tail(dim).array() * dual.as_const().to_eigen().array() / c;
}
void scale_box_dual_in_place_in(VectorViewMut<T> dual) const
{
dual.to_eigen().array() =
dual.as_const().to_eigen().array() / delta.tail(dim).array() * c;
}
void unscale_dual_in_place_eq(VectorViewMut<T> dual) const
{
dual.to_eigen().array() = dual.as_const().to_eigen().array() *
delta.middleRows(dim, n_eq).array() / c;
}
void unscale_dual_in_place_in(VectorViewMut<T> dual) const
{
dual.to_eigen().array() = dual.as_const().to_eigen().array() *
delta.segment(dim + n_eq, n_in).array() / c;
}
// modifies residuals in place
void scale_primal_residual_in_place(VectorViewMut<T> primal) const
{
primal.to_eigen().array() *= delta.tail(delta.size() - dim).array();
}
void scale_primal_residual_in_place_eq(VectorViewMut<T> primal_eq) const
{
primal_eq.to_eigen().array() *= delta.middleRows(dim, n_eq).array();
}
void scale_primal_residual_in_place_in(VectorViewMut<T> primal_in) const
{
primal_in.to_eigen().array() *= delta.segment(dim + n_eq, n_in).array();
}
void scale_box_primal_residual_in_place_in(VectorViewMut<T> primal_in) const
{
primal_in.to_eigen().array() *= delta.tail(dim).array();
}
void scale_dual_residual_in_place(VectorViewMut<T> dual) const
{
dual.to_eigen().array() *= delta.head(dim).array() * c;
}
void unscale_primal_residual_in_place(VectorViewMut<T> primal) const
{
primal.to_eigen().array() /= delta.tail(delta.size() - dim).array();
}
void unscale_box_primal_residual_in_place(VectorViewMut<T> primal) const
{
primal.to_eigen().array() /= delta.tail(dim).array();
}
void unscale_primal_residual_in_place_eq(VectorViewMut<T> primal_eq) const
{
primal_eq.to_eigen().array() /= delta.middleRows(dim, n_eq).array();
}
void unscale_primal_residual_in_place_in(VectorViewMut<T> primal_in) const
{
primal_in.to_eigen().array() /= delta.middleRows(dim + n_eq, n_in).array();
}
void unscale_box_primal_residual_in_place_in(VectorViewMut<T> primal_in) const
{
primal_in.to_eigen().array() /= delta.tail(dim).array();
}
void unscale_dual_residual_in_place(VectorViewMut<T> dual) const
{
dual.to_eigen().array() /= delta.head(dim).array() * c;
}
};
template<typename T>
bool
operator==(const RuizEquilibration<T>& ruiz1, const RuizEquilibration<T>& ruiz2)
{
bool value =
// ruiz1.delta == ruiz2.delta &&
ruiz1.c == ruiz2.c
// ruiz1.dim == ruiz2.dim
// ruiz1.epsilon == ruiz2.epsilon &&
// ruiz1.max_iter == ruiz2.max_iter &&
// ruiz1.sym == ruiz2.sym &&
// ruiz1.logger_ptr == ruiz2.logger_ptr
;
return value;
}
template<typename T>
bool
operator!=(const RuizEquilibration<T>& ruiz1, const RuizEquilibration<T>& ruiz2)
{
return !(ruiz1 == ruiz2);
}
} // namespace preconditioner
} // namespace dense
} // namespace proxqp
} // namespace proxsuite
#endif /* end of include guard PROXSUITE_PROXQP_DENSE_PRECOND_RUIZ_HPP */